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Outline

1. Viscosity of Heavy Ion Collisions

2. Dispel misconceptions about relativistic viscous hydro

– Forget “second order theories”

3. Solve viscous 1+1 viscous hydro with radial and Bjorken symmetries.

4. Show the important effects for Heavy Ion Collisions

5. Discuss Limitations



Observation:

x

y

b
φ

There is a large momentum anisotropy:

v2 ≡
〈px〉2 − 〈py〉2

〈px〉2 + 〈py〉2
≈ 20%

Interpretation

• The medium responds as a fluid to differences in X and Y pressure gradients

• Hydrodynamic models work well enough.

Is the system Large enough? Does it live Long enough for hydro?



How Long and Large is Long/Large Enough ?

• Need the mean free path times expansion rate less than one

`m.f.p. × Expansion Rate � 1



How Long and Large is Enough ?

• Quick estimate of the mean free path:

`m.f.p ≡
1

nσ
=

1
n︸︷︷︸
∼T 3

× σ︸︷︷︸
α2

s/T 2

∼ 1
α2

sT

2

• So the Figure of Merit:

1/α2
sT︷ ︸︸ ︷

`m.f.p. ×
1/τ︷ ︸︸ ︷

expansion rate � 1
1
α2

s︸︷︷︸
Liquid Parameter

× 1
τT︸︷︷︸

Experimental Parameter

� 1



How Long and Large is Long/Large Enough ?

• What is the mean free path? `mfp ≡ η
e+p

• The mean free path should be less than the expansion rate 1
τ :

η

e + p︸ ︷︷ ︸
`mfp

1
τ

� 1

• Then using the relation: (e + p) = sT .

η

s︸︷︷︸
Liquid parameter

× 1
τT︸︷︷︸

Experimental parameter: ∼ 1

� 1

1. η/s needs to be small to have interacting QGP at RHIC.

2. Even if η/s is small, dissipative effects are significant!



Estimates of η/s for the initial stage of the QGP

1. Perturbative QCD – Kinetic Theory Arnold, Moore, Yaffe.

η ≈ 150 T 3 1
g4 . Based upon kinetic theory of quarks and gluons. Set αs → 1/2 and

mD → a reasonable value

(
`mfp

τ

)
≈ 0.3︸︷︷︸

η/s

1
τT︸︷︷︸
∼1

∣∣∣∣∣∣∣∣ `mfp ≈ 4 thermal wavelengths

2. Strongly Coupled conformal N=4 SYM – AdS/CFT Son, Starinets, Policastro

No kinetic theory exists.

(
`mfp

τ

)
=

1
4π︸︷︷︸
η/s

1
τT︸︷︷︸
∼1

∣∣∣∣∣∣∣∣ `mfp ≈ 1 thermal wavelength

With these sorts of numbers (not weakly coupled) expect some collectivity.



Summary at time τ0

To ∼ 300 MeV and τ0 ∼ 1 fm

• Find: (
Γs

τ

)
≈ 0.1− 0.4

How does Γs

τ
evolve?

• 1D Expansion – scales set by temperature.

• 3D Expansion – scales fixed.



How does Γs/τ evolve?
Bjorken Expansion

beam direction

• 1D Bjorken Expansion – scales set by temperature

– Temperature decreases T ∼ 1
τ1/3

Γs

τ
∼ #

τT
∼ #

1

τ 2/3

Viscous effects get steadily smaller



How does Γs/τ evolve?

3τ
1V ~ 

• 3D Expansion – scales fixed

– Density decreases n ∼ 1
τ3

Γs

τ
∼ #

τnσo

∼ #
τ 2

σo

Viscous effects get rapidly larger



Solving the Relativistic Navier Stokes Equations RNSE

• The RNSE as written can not be solved. There are unstable modes which

propagate faster than the speed of light.

• Why? Because the stress RNSE tensor is not allowed time to change.

T ij
vis

∣∣∣
instantly

= η
(
∂ivj + ∂jvi − 2

3
δij∂iv

i
)

• Can make many models which relax to the RNSE.

T ij
vis

∣∣∣
ω→0

∼ η
(
∂ivj + ∂jvi − 2

3
δij∂iv

i
)

• In the regime of validity of hydrodynamics the models all agree with each

other and with RNSE.

Can solve these models



Diffusion Equation

∂tn−D∇2n = 0

• Specifies the form of the spectral density at small k and ω

GR(ω, k) =
1

∂t −D∇2
=

1
−iω + Dk2

ω

ω)/ω (00
RIm G

2Dk

=⇒ D

ω

ω)/ω(ii
RIm G



Relaxation Time Approximation:

∂tn + ∂xj = 0

∂tj = −(j + D∇n)
τR

• Solve the system equations and find the retarded correlator

ImGR(ω)
ω

=
D

π

1
1 + (ωτR)2

D

ω

ω)/ω(ii
RIm G

Rτ~1/



Weak Coupling Sum Rules and Short Time Response

D

ω

ω)/ω(ii
RIm G

Rτ~1/

• f-Sum Rule at Weak Coupling∫
dω

ImGii
R(ω)
ω︸ ︷︷ ︸

Short Times

=
〈
v2
p

〉

• Substitute the model GR(ω)/ω

D

τR︸︷︷︸
Short Times

=
〈
v2
p

〉

• Use short and long time parameters:

– Long Time Parameters: D

– Short Time Parameters: D
τR

=
〈
v2
p

〉



Real Spectral Densities:

• Relaxation models are a one parameter ansatz for the spectral density at small

frequency which satisfy the f-Sum Rule

Cartoon of Weak Coupling
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Strong Coupling (Kovtun, Starinets; DT)
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A Lorentzian ansatz may be a poor choice.



Relaxation Time Approximation

• Bjorken Expansion – Normal Viscous Hydro

de

dτ
= −e + T zz

τ
T zz

eq = p− 4
3

η

τ

• Bjorken Expansion – Relaxation Time Approximation

de

dτ
= −e + T zz

τ
and

dT zz

dτ
= −

(T zz − T zz
eq )

τR

– What are the appropriate initial conditions for this second equation?

Answer: T zz ' T zz
eq



Kinetic Theory Calculations by D. Molnar

The stress tensor rapidly approaches quasi -stationary form

T zz = p− 4
3

η

τ

T xx = p +
2
3

η

τ



Solution of Relaxation Time Equations
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Relaxation is practically the same as Navier Stokes

Made precise – L. Lindblom



A simple model: Inspired by H.C. Ottinger, Physica 1997

• Imagine a tensor cij which relaxes quickly to ∂ivj + ∂jvi

∂tcij − (∂ivj + ∂jvi) =
c̄ij

τ0
+
〈cij〉
τ2

where c̄ij = (tr c) δij and 〈cij〉 = cij − 1
3 c̄ij

• For small τ0 and τ2 we have:

cij ≈ τ0δij ∂iv
i + τ2(∂ivj + ∂jvi −

2
3
δij∂lv

l)

• Then the “effective” pressure for small strains is given by:

Tij ≈ p(δij − a1 cij)

Compare this to the canonical form:

Tij ≈ pδij + σ∂iv
i + η(∂ivj + ∂jvi −

2
3
δij∂lv

l)

Can map, (τ0, τ2, a1) → (σ, η, c∞)



Another Model: (Inspired by Lindblom and Geroch, Phys. Dev. D1994)

• Write a set conservation/balance laws:

∂µ(Nµ) = 0

∂µ(T µν) = 0

∂µ(Aµαβ) = Iαβ

where

Nµ = nuµ

T µν = euµuν + p∆µν + uµqν + uνqµ + τµν

Aµαβ = 2T∆µ(αuβ)

Iαβ = −
T

η
ταβ −

2T

3σ
∆αβ −

2T

κT
(qαuβ + qβuα)

• A completely different model at short times

• Only the long time behavior is the same. The long time behavior is

controlled by the viscous coefficients.

None of the details of these models should matter.



Sod’s Test Problem
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Compare the different models:
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The solutions are very similar but different from ideal hydro.



Compare the stress tensor with the Navier Stokes Equations:
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The stress tensor is close to its canoncial form.



Summary & Warnings

• All models agree about the solution to the Navier Stokes equations

• The stress energy tensor is almost always very close to

T ij ∼ η
(
∂ivj + ∂jvi − 2

3
δij∂lv

l
)

This holds in the regime of validity of hydrodynamics.

1. The only natural initial condition is

T ij|τ0 = η
(
∂ivj + ∂jvi − 2

3
δij∂lv

l
)

2. In general the models have several free parameters. The solution only

depends on the viscosity and not short time parameters.



Running Viscous Hydro in Three Steps

1. Run the evolution and monitor the viscous terms

2. When the viscous term is about half of the pressure:

– The models disagree with each other.

– T ij is not asymptotic with∼ η(∂ivj + ∂jvi − 2
3
δij∂lv

l)

Freezeout is signaled by the equations.

3. Compute spectra:

– Viscous corrections to the spectra grow with pT

Maximum pT is also signaled by the equations.



Bjorken Solution with transverse expansion: Step 1
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• First the viscous case does less longitudinal work.

• Then the transverse velocity grows more rapidly because the transverse pressure is

larger.

• The larger transverse velocity then reduces the energy density more quickly than ideal

hydro.

Viscous corrections do NOT integrate to give an O(1) change to the flow.



Monitor the viscous terms and compute freezeout: Step 2

• Contours where viscous terms become O(1)
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The space-time volume where hydro applies depends strongly on η/s



Compute the spectra with the viscous correction: Step 3

f → fo + pipj 〈∂ivj〉
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Limitations:

• Viscous hydro resums terms which grow with time.

Time×
`m.f.p

L2

– If the system has finite lifetime these effects are unimportant.

– Important for the Sod Problem but not for Heavy Ions

• Other “viscous” effects are more important and not included

– Finite Opacity – Particles Escape

– Memory Effects

– Important for Heavy Ions but not for the Sod Problem



Conclusions:

• Viscosity does not change the ideal hydrodynamic solution

much. Time is not too long.

• “Viscous” effects are very important

• It signals the boundary of applicability

• Constrain Viscosity/Opacity/Mean Free Path from other

observables


